منابع مشابه
Stochastic Hopfield neural networks
Hopfield (1984 Proc. Natl Acad. Sci. USA 81 3088–92) showed that the time evolution of a symmetric neural network is a motion in state space that seeks out minima in the system energy (i.e. the limit set of the system). In practice, a neural network is often subject to environmental noise. It is therefore useful and interesting to find out whether the system still approaches some limit set unde...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Learning Stochastic Feedforward Neural Networks
Multilayer perceptrons (MLPs) or neural networks are popular models used for nonlinear regression and classification tasks. As regressors, MLPs model the conditional distribution of the predictor variables Y given the input variables X . However, this predictive distribution is assumed to be unimodal (e.g. Gaussian). For tasks involving structured prediction, the conditional distribution should...
متن کاملSimplified Stochastic Feedforward Neural Networks
It has been believed that stochastic feedforward neural networks (SFNNs) have several advantages beyond deterministic deep neural networks (DNNs): they have more expressive power allowing multi-modal mappings and regularize better due to their stochastic nature. However, training large-scale SFNN is notoriously harder. In this paper, we aim at developing efficient training methods for SFNN, in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithmica
سال: 1991
ISSN: 0178-4617,1432-0541
DOI: 10.1007/bf01759054